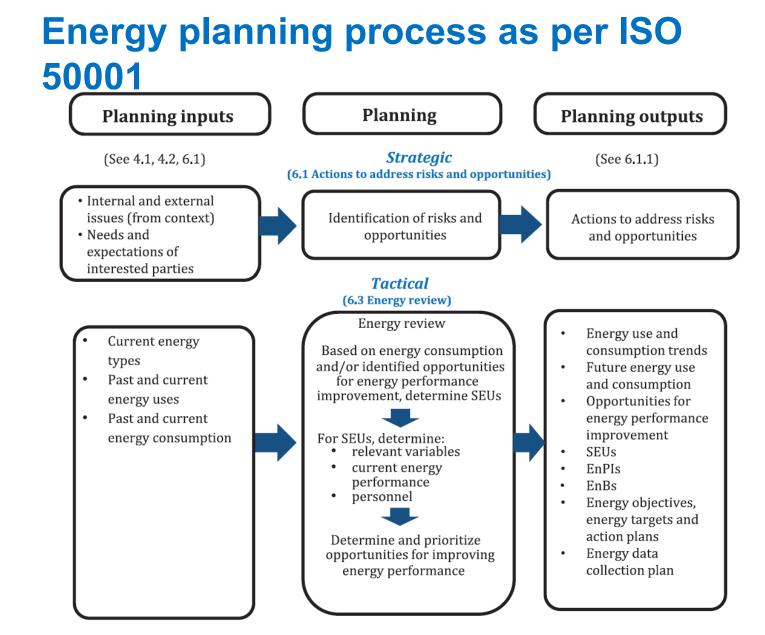


Energy Assessment IDENTIFYING OPPORTUNITIES FOR IMPROVEMENTS





In this session...

- Conducting Energy Assessment / Audits
 - ISO 50001 Energy Review
 - ISO 50002 Energy Audits
- Methodology / scope of deep-dive energy assessment by prominent programs like PaCT, CbD
- Exercise
- Plan your next steps

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Energy Audit – ISO 50002

Level-1 – Walkthrough energy audit

- Suitable for small organizations or as preliminary assessment for large organizations
- Identify focus areas, improve management awareness, basic training of facility team
- Data collection Basic energy profile; variables for normalizing EnPIs, list of equipment, estimated loads
- Analysis Basic energy balance, SEUs, high level energy profile, comparison with benchmarks
- Opportunities Low hanging fruits, low-cost measures; basic capital requirements
- Prioritization Indicative savings, typical payback, elementary implementation plan

Energy Audit – ISO 50002

Level-2 – Detailed Energy Audit

- Suitable for single sites
- Data collection detailed energy consumption data; variables for normalizing EnPIs, monitoring equipment data, Design and O&M documents, future plans, production data
- Analysis Current & historical energy profile, EnPIs, detailed energy and mass balance, energy performances, evaluate design and configuration, evaluate equipment and processes
- Opportunities low-, medium-, and high-cost measures; indicate non-energy gains, further data requirements, benchmark comparison
- Prioritization detailed savings reconciled with balance, basic capital and labour cost assessment, payback period, implementation plan

Energy Audit – ISO 50002

Level-3 – Comprehensive Energy Audit

- Suitable for whole site
- Data collection detailed energy consumption data, sub-meter load profile, consumption of key processes, detailed analysis of variables, monitoring equipment data, Design and O&M documents, future plans, production data, how is energy performance managed, quotes for saving opportunities from suppliers
- Analysis Current & historical energy profile, EnPIs, details energy and mass balance, energy performances, evaluate design and configuration, evaluate equipment and processes, effect of variables
- Opportunities low-, medium-, and high-cost measures; quantified non-energy gains, further data requirements, detailed analysis sing advanced techniques, vendor evaluation
- Prioritization detailed savings reconciled with balance, detailed capital and labour cost calculation, detailed economic analysis, implementation plan

Requiremments by Higg FEM

Level - 1 Requirements

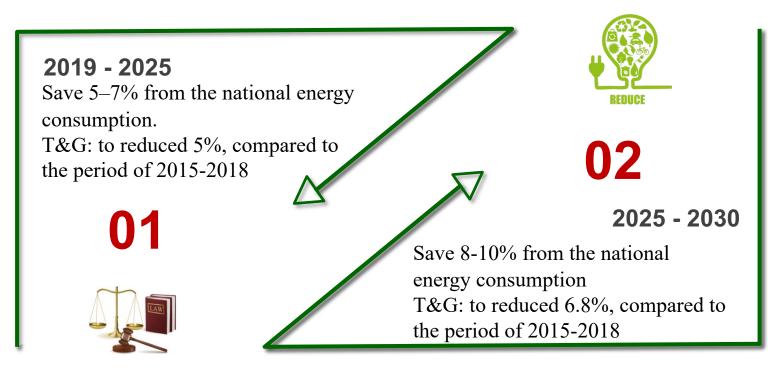
- Track all energy sources
- Track and measure its energy use from the sources
- Standardize methods and frequency to track each energy source

Level - 2 Requirements

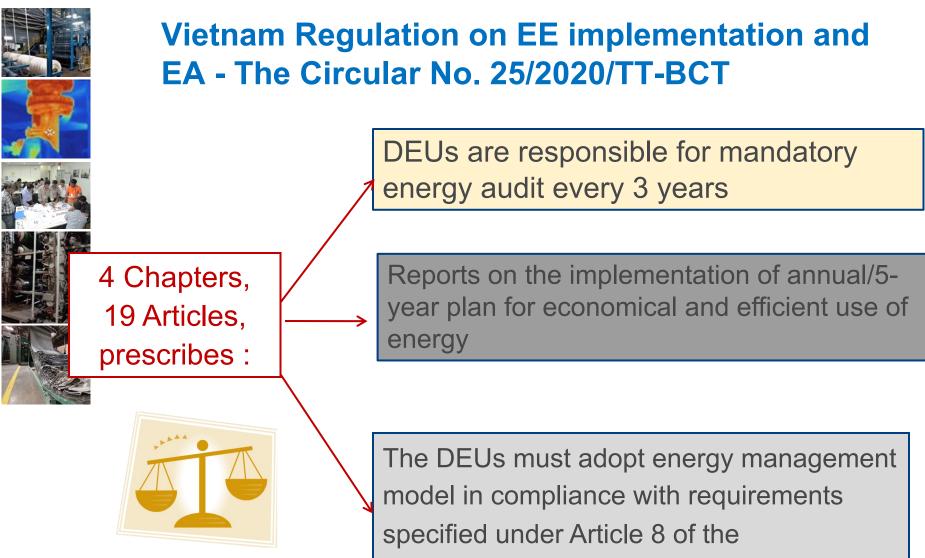
- Establish energy baselines
- Identify energy intensive processes or operations
- Set targets for improving energy use
- Set targets for reduction of GHG emissions (Scope-1 and Scope-2)
- Develop implementation plan to improve energy use and reduce GHG emissions
- Demonstrated continual improvements compared to baselines

Level - 3 Requirements (not mandatory)

- Calculate and report Scope 3 emissions
- Develop Science-Based Targets



Deep-dive energy assessment by brands and international organizations


- Typically a trade-off between Level-2 and Level-3 Energy Audits
- Critical aspects are (i) quantification of saving potential in processes (especially investment grade), (ii) decarbonization strategy e.g. replacing fossil fuel, (iii) improving management practices, (iv) energy team formation
- Feasibility studies are usually conducted only for selected investment grade measures
- Implementation monitoring (2 6 months) is usually part of the scope
- Vendor evaluation is usually included in monitoring phase on need basis
- Final impact assessment on completion of monitoring period

Vietnam National Energy Efficiency Program for the period of 2019-2030 (VNEEP 3)

Governmental Decree No. 21/2011/ND-CP

Typical energy audit tasks

T

2- Determine scope and criterion of the audit

1- Define Audit and Energy objectives

3- Define energy audit tasks and responsibilities among auditors and facility

4- Formulate audit team based on identified tasks and required competencies

5- Secure top management support; break ice with key personnel (remember the formula for change)

6- Establish communication protocol

- Among auditors
- Between auditors and facility

7- Ensure access to

- · Audit areas, processes, facilities
- Relevant personnel, systems and equipment (e.g. ensuring that measurement points are accessible)
- Documents, drawings, test reports, records, manuals etc.
- Monitoring data, calibration records,

8- Define measurement requirements and develop a measurement plan

- Stage-1: Point source measurement using equipment
- Stage-2: Data logging over representative period and interval; also including data of variables like production, operating parameters etc.
- Stage-3: Preliminary data treatment / organization
- Stage-4: Calculation and data visualization

GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Factors that influence Energy audit cost

- Level of uncertainty/ accuracy
- The extent to which investment grade, longer payback opportunities are investigated
- Scope and boundaries of audit
- Availability, organization, and details of energy data
- Availability of previous audit reports
- Complexity of facility
- Support provided by facility to the site
- Requirement for implementation support (monitoring, training, vendor evaluation, impact assessment)
- Distance to be travelled (Travel and accommodation)

Clean by Design 10 best practices - example

	Sr.	Best Practices	Attained Score	Total Score	Comments
	1	Measuremen t and management	19	40	Basic data management is being done. Electricity generation data is logged and live. Other data manually entered.
	2	Condensate water collection and recycling	2	15	Condensate recovery is very low due to contamination in condensate from leaking heat exchangers in dyeing machines.
	3	Cooling water reuse efficiency	1.5	10	Significant potential in cooling water recovery.
	4	Process water and wastewater reuse efficiency	3	12	Condensate and other process water are discharged.
	5	Discharged Hot water heat recovery	0	10	No wastewater heat recovery system installed. Need to separate the hot and cold water discharge lines.
JIZ	für Interna Zusammen	tionale arbeit (GIZ) GmbH			Resource Efficient Management of Energy (REME)

Clean by Design 10 best practices - example

	Sr.	Best Practices	Attained Score	Total Score	Comments
	6	Boiler efficiency improvement	11	20	Boiler rooms are very well managed. Boilers are for steam generation mainly and equipped with heat recovery systems. Potential for improving efficiency exists.
	7	Steam traps and steam system performance	3.5	15	Steam traps are by-passed mainly due to back pressure on traps. Condensate discharged due to contamination.
	8	Insulation Optimization	3.5	7	Steam and Oil Pipes are well insulated. Insulation of valves is proposed.
	9	Setting machine efficiency optimization	5	15	Heat recovery is installed at 1 stenter and recommended on all remaining as well.
	10	Compressed air system optimization	4.5	6	VFD Installed on both compressors. Need to develop leakage management program.
t ir		Total	53	150	35.3%
JIZ	Zusammenarbeit (GIZ) GmbH				Resource Efficient Management of Energy (REME)

Task – The Textile Company

As an energy service provider, you have received a request for energy services from "The Textile Company".

Your tasks as a groups are;

- Review the information provided to you
- Enlist the sustainability related requirements the company may have
- Develop a list of activities to provide required support to the company with timelines
- Identify how many experts, having which expertise, should be included in the team of service provider? And why?
- What type of equipment / gadgets you may need and why you need them?
- Enlist the key stakeholders that need to be involved in the company and identify what support is needed from the company during the project
- Enlist the information required from the company before starting the onsite assessment and other support activities

Task

Activity time

- Participants read the story and work on tasks (45 min)
- Present your plans to the company management (group presentations) (5 min each group)

